TECHNICAL SPECIFICATION
FOR
REFRIGERATED CONTAINER

10’ × 8’ × 8’6”

MODEL NO: SS1WN1

— POLYURETHANE INSULATION
— ROOF AND SIDE PANEL MGSS
— FRONT AND REAR END FRAME CORTEN A / EQUIVALENT
— ALUMINUM FLOOR RAIL
— LINING: SIDE & DOOR STAINLESS STEEL (HGSS)
 ROOF PRE-PAINTED ALUMINUM SHEET
— DOOR PANEL MGSS
— TOP & BOTTOM RAIL CORTEN A / EQUIVALENT
— CORRUGATED BASE CORTEN A / EQUIVALENT

SPEC NO. : SS1WN1-FB
ISSUED DATE: February 9, 2009
REVISED DATE:

SHANGHAI REEFERCO CONTAINER CO., LTD.
1. GENERAL

1) The container model SS1WN1 Reefer is designed for the carriage of foodstuffs frozen, chilled and general cargo by road, rail and sea (above or below decks) and is suitable for the environmental conditions imposed by these modes of transports.

2) The container is designed for the carriage of deep frozen, frozen and chilled (excluding hung-chilled meat) cargoes in the range -25°C to +25°C with external temperature ranging from -40°C to +50°C and is suitable to be subjected to severe thermal shock.

3) Refrigeration unit CARRIER 69NT40

2. STANDARDS & REGULATIONS

— ISO TC - 104

 668 -Classification, dimensions and ratings (1995 edition)
 1161- Corner fittings-specification (1990 edition)
 1496/2 - Specification and testing (1996 edition)
 Part 2: Thermal containers
 6346 - Coding, identification and marking (1995 edition)

— CSC requirements

— TIR requirements

— Timber components and certificates (No exposed timber to be used)

— USDA requirement and certificate

— Taint test (Acc. BS 3755 last issue)

— UIC registration

— Type approval by classification society
3. DESIGN DATA

3.1 External Dimensions

Length: 2,991 mm (0, -6) 10’
Width: 2,438 mm (0, -5) 8’
Height: 2,591 mm (0, -5) 8’6”

3.2 Internal Dimensions (Nominal)

Length: 2,388 mm (0, -10)
Width: 2,290 mm (0, -8)
Height: 2,276 mm (0, -10)

3.3 Door openings (Nominal)

Width: 2,294 mm (0, -5)
Height—at sill: 2,264 mm (0, -5)
Cargo access height: 2,224 mm (0, -10)

3.4 Cubic Capacity

12.4 m³ 440cu. ft.

3.5 Weights & Ratings

Tare weight (Including Ref. Unit): 2,030 kg ±2% (4,480 lb.)
(Excluding Ref. Unit): 1,500 kg ±2% (3,310 lb.)
Payload: 12,970 kg (28,590 lb.)
Max. Gross Weight: 15,000 kg (33,070 lb.)

3.6 Thickness & Density of Thermal Insulating PUR Foam

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side</td>
<td>63</td>
</tr>
<tr>
<td>Door</td>
<td>74</td>
</tr>
<tr>
<td>Roof</td>
<td>80</td>
</tr>
<tr>
<td>Floor</td>
<td>Min. 76</td>
</tr>
<tr>
<td></td>
<td>Max. 135</td>
</tr>
<tr>
<td>Corner</td>
<td></td>
</tr>
</tbody>
</table>

3.7 Insulation

Polyurethane foam with R-141b (non-CFC) blowing agent:
Air leakage: Qmax = 5 m³/hr (176.5 cu. ft./hr) at 25.4mm WPG inside
Heat transfer rate: Umax = 17 kcal/hr. °C (20 W/K) at 20°C mean temp.
4. CONSTRUCTIONS

4.1 Base Frame
1) Forklift pocket: 4.0mm thick pressed profile with 6.0mm thick closed strip
2) Base panel: 1.6mm thick corrugated panel welded to bottom side rail
3) Bottom side rail: 4.0mm thick upper and lower cold rolled steel

4.2 Floor
1) Floor board: 40mm high and 63.5mm spaced aluminum extruded “T” section
2) Floor bow: Aluminum extruded “I” section floor bow shall be stitch welded to the under side of floor board.

4.3 Front Frame
1) Front top rail: 4.0mm thick pressed profile
2) Front bottom rail: 4.0mm thick pressed profile with load transfer area brackets
3) Corner Post: Welded construction with 6.0mm thick outer and 4.0mm thick inner
4) Double plate: 4.0mm thick rectangular plates

4.4 Rear End Frame
1) Door Header: Welded construction with 4.0mm thick outer and 3.0mm thick inner, and four (4) vertical gusset plates welded behind of cam keepers
2) Door Sill: Welded construction with 6.0mm thick outer and 4.0mm thick inner, and four (4) vertical gusset plates welded behind of cam keepers
3) Corner Posts: Welded construction with 6.0mm thick outer and inner, and with 12mm thick reinforcement plate.
4) Double plate: 4.0mm thick rectangular plate

4.5 Door Panel
Each door is capable of swinging 270 degree when opened, which is designed to prevent left hand door from opening before right hand door in TIR requirements.
1) Door panel
 (1) outer – 1.6mm thick pre-painted MGSS sheet
 (2) inner – Corten pressed section
2) Door gaskets
 (1) outer gaskets – EPDM “C” section double lips
 (2) inner gaskets – EPDM “O” section
3) Locking gears: SAEJIN SJ-77M or eq., with anti-theft handle & secure cam & keeper on right door center, hot-dip galvanized 75μ
4) Door hinge: Eight (8) hot dip galvanized steel hinges with nylon
5) Hinge pin : Ø 12mm stainless steel bar fixed by flaring
6) Door lining : 0.7mm thick stainless sheet, with 12mm deep pressed battens
7) Hinge lug : 6.0mm thick MGSS plate

4.6 Side Wall
1) Outer Cladding : 1.0mm thick M.G.S.S. with vertical corrugations, welded together by TIG method
2) Inner Lining : 0.7mm thick H.G.S.S. with deep inverted battens, welded together by TIG method
3) Top side Rail : 4mm thick cold rolled section with chamfer
4) Side post : Two (2) 4.0mm thick pressed omega section per side, bonded to side panel by bi-adhesive structure tape or glue
5) Side Stringer : Two(2) per side, MGSS pressed omega section, spot welding to side lining

4.7 Roof
1) Outer Cladding : 0.8mm thick M.G.S.S. with deep pressed corrugations, welded together by TIG method
2) Lining : 0.8mm thick one piece pre-painted aluminum sheet, with small bead corrugations
3) Roof bow : Two (2) pieces MGSS pressed omega section
4) Roof Stringer : Two (2) aluminum omega section, bonded to roof lining by bi-adhesive structure tape and fixed with three (3) rivets

4.8 Particular attachment
1) Floor drain
 Two (2) drains are provided at each front and rear end. [Total four (4)]
2) Lashing bar
 Two (2) pieces lashing bar per side. [Total four (4)]
3) Generator set mounting receptacles
 Front corner post and front top rail fitted with receptacles and brackets for mounting clip-on generator set.

4.9 Marking
All containers to be marked in accordance with latest standard regulation and owner's specification.
5. SURFACE PREPARATION AND PROTECTION

5.1. Surface preparation

5.1.1. Prior to assembly

1) All steel components, prior to forming, will be short blasted to Swedish Standard Sa 2.5 to remove rust, mill scale etc. and applied with zinc rich primer approx. 10 micron.
2) All stainless steel components, prior to forming, will be cleaned to all oil and dirt etc.
3) Gear cam keepers will be electro zinc plated. (Thickness : Min. 16 micron)
4) Locking rod assemblies are welded with gear cams, bars, holders and handle hinges are hot dip galvanized. (Thickness: Min. 75 micron)

5.1.2. After assembly

1) All stainless steel parts will be sweep blasted with non-metallic media and cleaned to remove all oil rust, dirt and hot rolled mill scale and etc.
2) Welding seam line will be blasted to remove all welding slags, spatters and other foreign matters.

5.1.3. Polyurethane contact surfaces

Glue or adhesive primer will be applied to the polyurethane contacting surfaces for good adhesion with polyurethane.

5.2. Painting

All steel parts shall be painted as follows:

5.2.1. SPA-H parts

1) Outside surfaces (end frame & side top & bottom rail)
 1st primer: Zinc rich primer - 30 micron(after ass'y)
 2nd primer: Polyamide epoxy - 40 micron(after ass'y)
 3rd Top: Vinyl high build - 40 micron(after ass'y)

 (Color: RAL 9010)

2) Polyurethane foaming contact surfaces (inside surface)
 1st primer: Polyamide epoxy - 20 micron(after ass'y)
5.2.2. MGSS parts (roof and side panel)
 1st primer: Polyamide epoxy - 40micron(after ass'y)
 2nd top: Vinyl high build - 40micron
 (Color: RAL 9010)

5.2.3. Foaming contact area (HGSS, MGSS and T-FLOOR)
 Adhesive primer - 15micron

5.2.4. Door panel
 1st primer: Polyamide epoxy - 40micron
 2nd primer : Polyurethane - 50micron
 (Color: RAL 9010)

5.2.5. Under coating
 1st primer: Zinc rich primer - 30micron
 2nd Top : Bitumen/wax - 200micron
6. MATERIAL SPECIFICATION

1) The main materials used in construction are as follow:

<table>
<thead>
<tr>
<th>Where used</th>
<th>Material</th>
<th>Yield Point (N/mm²) (min.)</th>
<th>Tensile Strength (N/mm²)(min.)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor Rail</td>
<td>Al. Alloy Extrusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA6061-T6</td>
<td>225</td>
<td>270</td>
<td>8</td>
</tr>
<tr>
<td>Roof Lining</td>
<td>Al. Alloy Sheet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA5052-H16/H46</td>
<td>180</td>
<td>240</td>
<td>6</td>
</tr>
<tr>
<td>Side/Roof panel</td>
<td>MGSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>door panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side/Door Lining</td>
<td>SUS304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator Fitting Nut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front/Rear Corner Post</td>
<td>CORTEN A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Header/Sill</td>
<td>/ equivalent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top/Bottom Side Rail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Header/Sill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forklift pocket</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated base</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Steel Pipe</td>
<td>STK 51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lock Rod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Steel for forged</td>
<td>JIS S25C</td>
<td>270</td>
<td>450</td>
<td>25</td>
</tr>
<tr>
<td>(Lock Rod Cam Keeper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weldable steel Castings</td>
<td>SCW 480</td>
<td>270</td>
<td>450</td>
<td>21</td>
</tr>
<tr>
<td>(corner castings)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation Tape</td>
<td>Electrolytic Buffer of PE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Between steel and aluminum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foam Tape</td>
<td>Adhesive of P.V.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation Material</td>
<td>1) Rigid Polyurethane Foam</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2) Blowing Agent: R141b

2) Fasteners application

<table>
<thead>
<tr>
<th>Material</th>
<th>Shear Resistance (N)</th>
<th>Tensile Resistance (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum blind rivet</td>
<td>4390</td>
<td>4490</td>
</tr>
<tr>
<td>diam. 4.8mm (3/16")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum blind rivet</td>
<td>7540</td>
<td>6500</td>
</tr>
<tr>
<td>diam. 6.4mm (1/4")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless steel blind rivet</td>
<td>4500</td>
<td>5500</td>
</tr>
<tr>
<td>diam. 4.8mm (3/16")</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Sealant

Exposed Sealer
 a) Interior surface: MS
 b) Exterior surface: Silicone

Hidden sealer Butyl
7. TESTING & INSPECTION

1. Type approval and inspection of units is carried out by classification society.
2. Every container is manufactured under effective quality control procedures to meet the specified standards and align industrial practice. After completion all container dimensions will be checked and door operation checked.

<table>
<thead>
<tr>
<th>Item</th>
<th>Test load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacking</td>
<td>1.8R – T Load: 86,400 kg/post</td>
</tr>
<tr>
<td>Top & bottom lifting</td>
<td>2.0 R – T</td>
</tr>
<tr>
<td>Forklift pocket</td>
<td>1.6R – T (if applicable)</td>
</tr>
<tr>
<td>Restraint</td>
<td>R – T Load: 1.0R/rail</td>
</tr>
<tr>
<td>Racking test</td>
<td></td>
</tr>
<tr>
<td>Transverse</td>
<td>15,240 kg</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>7,620 kg</td>
</tr>
<tr>
<td>Strength</td>
<td></td>
</tr>
<tr>
<td>End wall</td>
<td>0.4 P</td>
</tr>
<tr>
<td>Side wall</td>
<td>0.6 P</td>
</tr>
<tr>
<td>Roof</td>
<td>300 kg</td>
</tr>
<tr>
<td>Floor (ISO +33%)</td>
<td>7,260 kg</td>
</tr>
<tr>
<td>Airtightness test</td>
<td></td>
</tr>
<tr>
<td>Internal pressure 25 ± 1 mm Aq.</td>
<td></td>
</tr>
<tr>
<td>Thermal test</td>
<td>In compliance with ATP</td>
</tr>
<tr>
<td>Performance test of thermal appliances</td>
<td>In compliance with ISO 1496/2</td>
</tr>
<tr>
<td>Taint test</td>
<td>In compliance with B.S. 3755-1964 or equivalent</td>
</tr>
</tbody>
</table>
8. GUARANTEE

8.1 Guarantees
The guarantee period will commence the date after the certification has been issued by the classification society.

8.2 Paint Guarantee
The application of paint will be guaranteed against corrosion and paint failure for a period of five (5) years. The guarantee is for faults affecting more than 10% of the painted surfaces and will assure partial or total re-painting of the container. Corrosion caused by acids, alkalis or other chemicals, damage by abrasion, impact or accident are excluded.

8.3 Decal Guarantee
The decals are warranted for seven (7) years to withstand the environmental conditions as “General” mentioned for color, stability & adhesion.

8.4 Other Guarantee
This will be guaranteed against fault in construction, poor workmanship and material for a period of one (1) year. Any damages caused by mis-handing, mis-securing, mis-loading, impact and any accidents relating from bad practices are excluded.
9. REVISION

9.1 Added USDA requirement and certificate (spec.2.)

9.2 Thermal test (spec 7.2.)
 In compliance with ATP.

9.3 Distance between the two fork lifting pockets.
 900mm ➔ 1,540mm, see drawing C20381080

Revised Date: February 9, 2009
CONTAINER REFRIGERATION UNIT
TECHNICAL SPECIFICATIONS

ThinLINE Leasing Specification

Model 69NT40-541-300 series

10 June 2008
TABLE OF CONTENTS

1. **UNIT PERFORMANCE** .. 1
 1.1. Net R-134a Refrigeration Cooling Capacity .. 1
 1.2. Evaporator Airflow (Downward) ... 1
 1.3. Electric Resistance Heating ... 1
 1.4. Fresh Air Renewal - 50 Hz @ Zero Ext. Static Pressure (Standard position) 1
 1.5. Condenser Airflow .. 1
 1.6. Unit Air Leakage ... 1
 1.7. Unit Heat Leakage .. 1
 1.8. Low Sound ... 1
 1.9. Bulkhead Resistance ... 1

2. **UNIT PHYSICAL DATA** .. 2
 2.1. Unit Weight ... 2
 2.2. Dimensions and Drawing references (Standard) ... 2
 2.3. Electrical ... 2
 2.4. Refrigeration Piping (Refer to Refrigeration Piping Diagram) .. 2

3. **UNIT DESIGN** .. 3
 3.1. Guidelines .. 3
 3.2. Operating Conditions ... 3

4. **COMPONENT DESCRIPTION** ... 3
 4.1. Compressor .. 3
 4.2. Condenser Fan Motor ... 3
 4.3. Evaporator Fan Motors (2) ... 3
 4.4. Condenser Coil .. 4
 4.5. Evaporator Coil .. 4
 4.6. Condenser Fan .. 4
 4.7. Evaporator Fans ... 4
 4.8. Heaters (Defrost and Heating) ... 4
 4.9. Electrical Controls Circuitry ... 4
 4.10. Safety Devices .. 5

5. **UNIT CONTROL SYSTEM** ... 6
 5.1. Temperature Controller/DataCorder .. 6
 5.2. Cooling Capacity Control .. 6
 5.3. Defrost .. 6

6. **MATERIALS AND COATINGS** .. 7
 6.1. Materials ... 7
 6.2. Coatings .. 7

7. **FEATURES FOR POST-PRODUCTION INSTALLATION** ... 8

8. **LISTING OF OPTIONS INCLUDED AND INSTALLED IN THE UNIT** ... 8

9. **REFRIGERATION PIPING DIAGRAM** .. 9

10 June 2008 i Model 69NT40-541-300 series
1. UNIT PERFORMANCE

1.1. Net R-134a Refrigeration Cooling Capacity

At 38°C (100°F) ambient temperature and 60 Hz Power Supply:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Cooling Capacity</th>
<th>Power</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>-29°C (-20°F)</td>
<td>3,230 Watt (11,000 Btu/h)</td>
<td>5.0 kW</td>
<td>0.55</td>
</tr>
<tr>
<td>-18°C (0°F)</td>
<td>6,010 Watt (20,500 Btu/h)</td>
<td>6.4 kW</td>
<td>0.66</td>
</tr>
<tr>
<td>2°C (35°F)</td>
<td>10,250 Watt (35,000 Btu/h)</td>
<td>10.8 kW</td>
<td>0.81</td>
</tr>
</tbody>
</table>

1.2. Evaporator Airflow (Downward)

High Speed: 5,437 m³/h @ 19.0 mm wg* (3,200 ft³/min @ 0.75 inch wg) @ 60 Hz
Low Speed: 2,379 m³/h @ 6.4 mm wg* (1,400 ft³/min @ 0.25 inch wg) @ 60 Hz

*Static pressure measured external to the unit.

1.3. Electric Resistance Heating

5,627 Watt (19,200 Btu/h) @ 460 V, 60 Hz (Including fan motor heat.)

1.4. Fresh Air Renewal - 50 Hz @ Zero Ext. Static Pressure (Standard position)

Flow rate: 0 - 180 cm³/h (106 cfm), Maximum rate meets the ATO requirement.
Rate is also affected by the container design. Adjustable disc is located on upper left access panel

1.5. Condenser Airflow

3,908 m³/h (2,300 ft³/min) @ 60 Hz

1.6. Unit Air Leakage

0.142 m³/h @ 50.8 mm wg (5 ft³/h @ 2 inch wg)

1.7. Unit Heat Leakage

3.9 W/K (7.4 Btu/h/°F) calculated

1.8. Low Sound

Does not exceed 78 dB(A) 1.5 meter in front and 1.2 meter above lower corner castings @ 380 V, 50 Hz.

1.9. Bulkhead Resistance

13,000 kg (28,660 lbs)
2. UNIT PHYSICAL DATA

2.1. Unit Weight

531 kg (1170 lbs)

2.2. Dimensions and Drawing references (Standard)

Unit Height: 2,235 mm (88.00 inch)
Unit Width: 2,026 mm (79.75 inch)
Unit Depth: 416 mm (16.38 inch)

Applicable Drawings:
98-02325, Rev. - Installation and Dimension
98-02327, Rev. - TIR Plan

2.3. Electrical

Operating Voltage Range 400 to 500 V, 3 ph @ 60 Hz ± 2.5%
360 to 430 V, 3 ph @ 50 Hz ± 2.5%

Power Cable (460V) 18 meter (59.4 ft) yellow 10/4 SO Hypalon; 90°C (194°F) rating.

Power Plug Type CEE17 with earth @ 3h position
Rated 32 A @ 440 VAC.

Circuit Breaker Must hold 25 A. Must trip at 29 A

• Address system of wire marking on all wiring (except controller). Control wires to be white, power wires to be red, ground wires to be green with yellow stripe.
• Wire is tin plated multi-strand copper
• Fan motors are single phase

2.4. Refrigeration Piping (Refer to Refrigeration Piping Diagram)

Refrigerant and Oil................. R-134a and POE oil
Refrigeration Circuits Solid copper tube
Service Ports SAE J639 R-134a connections are used on compressor service valves and liquid line.
Receiver Assembly Consists of receiver, brass service valve and fusible plug.
Receiver Vessel Copper with two brass sightglasses, one dry eye. Coated with acrylic electrocoat system.
Control Components Stepper modulation valve provides continuous capacity control and increased low temperature capacity, quench TXV for compressor cooling.
Heat Exchanger Copper, suction-side

10 June 2008 2 Model 69NT40-541-300 series
3. UNIT DESIGN

3.1. Guidelines
ISO 1496/2-1996(E); ATP; ARI; TIR; AMCA

3.2. Operating Conditions
Ocean Environment Salinity and high relative humidity, severe atmospheric conditions (temperature, wind, rain, spindrift variations).
Rolling .. Amplitude of 30° on each side, period of 13 seconds
Pitching Amplitude of 6°, period of 8 seconds
Permanent List 10° on each side
Shock .. Acceleration, longitudinal of 2g; vertical of 5g
Vibration As encountered by the following types of transport: naval, land (vehicular) and rail.
Ambient Range -30°C to +50°C (-22°F to +122°F)

4. COMPONENT DESCRIPTION

4.1. Compressor
Model .. Carrier 06DR241
Thermal Protection Internal, automatic reset
Standard Speed 1,750 rpm @ 60 Hz
Gas Displacement @ 1750 rpm 41 cfm
Oil Pump Reversible, gear
Finish .. Shotblast, iron phosphate surface preparation, electrocoat polyester base, electrostatic polyester powder paint topcoat.

4.2. Condenser Fan Motor
Nominal Rating 560 Watt (3/4hp)
Type ... Totally enclosed, non-vented
Speed ... 1,725 rpm @ 60 Hz
Shaft Material Stainless steel type 303/304/316
Frame Size 56
Finish .. Engineered marine finish of electrocoat epoxy paint.
Thermal Protection Internal, automatic reset

4.3. Evaporator Fan Motors (2)
Nominal Rating (high/low) 627/82 Watt (0.84/0.11hp)
Type ... Totally enclosed
Speed (high/low) 3,450/1,725 rpm @ 60 Hz
Shaft Material Stainless steel type 303/304/316
Frame Size 48
Thermal Protection Internal, automatic reset
4.4. Condenser Coil

Number of Rows 3
Tube Material Copper, patented enhanced internal cross-hatched surface.
Fin Material Copper, patented wave design.
Tube/Fin Coating Patented Acrylic Electrocoat
Fin Spacing 14 per 25.4 mm (1 inch)
Face Area 0.414 m² (4.46 ft²)
Fin Surface Area 25.5 m² (275 ft²)
Tubesheets (4) Copper

4.5. Evaporator Coil

Attitude 30° from horizontal
Tube Material Copper, patented enhanced internal cross-hatched surface.
Fin Material Aluminum
Face Area 0.63 m² (6.73 ft²)
Fin Surface Area 48.5 m² (522 ft²)
Number of circuits 16
Tube Sheets Aluminum (mounting hardware is 300-series stainless steel).
Fin Spacing 8 per 25.4 mm (1 inch)
Tube/Fin Treatment Oakite Cryscoat-747, or Parco Cleaner-PC2323

4.6. Condenser Fan

Type Axial, 9 blade
Number 1
Drive Direct via stainless steel motor shaft
Diameter 445 mm (17.5 inch)
Material 15% glass filled nylon

4.7. Evaporator Fans

Type Vane axial, 11 blade
Number 2
Drive Direct via stainless steel motor shaft
Diameter 330 mm (13 inch)
Material 15% glass filled nylon

4.8. Heaters (Defrost and Heating)

Main Heater Rods Six U-shaped tubular with stainless steel sheath.
Rated 750 Watt each @ 230 VAC.

4.9. Electrical Controls Circuitry

Control Circuit Transformer
Control Circuit Voltage 24 VAC (1 ph. @ 460 VAC, 60 Hz)
(nominal) 20 VAC (1 ph. @ 380 VAC, 50 Hz)
Rating ... 205 VA (24 V) plus 105 VA (18 V x2).
Insulation Class H

Indicator Lights
Function/Color:
Cool .. White
Defrost .. Orange
Heat ... Orange
In-range Green
Alarm .. Red
Supply Air Control....................... Yellow
Return Air Control Yellow

Contactors
Full load amp rating @ 600 VAC:
Condenser Fan 12 A
Evaporator Fan 12 A
Compressor 30 A
Heater .. 12 A

Main On-Off Switch
Location External face of unit
Type .. Toggle switch (bayonet)
Protection O-ring sealed shaft
Rating ... 10 A @ 115 VAC

4.10. **Safety Devices**

High pressure switch, settings:
Cut-out 2,413 kPa ± 69 kPa (350 psig ± 10 psig)
Cut-in ... 1,724 kPa ± 69 kPa (250 psig ± 10 psig)

Fusible Plug pressure relief device
Temperature setting 99°C (210°F)

High temperature safety
Temperature setting 54°C (130°F)

Circuit Breaker (CB1)
Trips at 29 amps

Fuses
Control Circuit
Rating 7.5 A (x2)
Type .. Auto blade, SAE J1284

Microprocessor
Rating 5 A (x2)
Type .. Auto blade SAE J1284
5. **UNIT CONTROL SYSTEM**

5.1. **Temperature Controller/DataCorder**

Manufacturer: Division of UTC (USA)
Type: ML3 Microprocessor

Controlling and Recording Range: -30°C to +30°C (-22°F to +86°F)
Controller (2) and Recording (2) Probes: Precision 10,000 Ohm Thermistor
Probe locations: Air entering the evaporator coil (return) and air leaving the evaporator coil (discharge).
Recorder memory: Minimum 1-year of trip information.
Interrogation: 5-pin connector (Veam or equivalent), unit front.

5.2. **Cooling Capacity Control**

Chilled Mode, Set Point Above -10°C (14°F)
Type of Capacity Control: Suction modulation
Control logic: PID control algorithm
Control range: ±0.25°C (± 0.45°F)
Heating: energize: 0.5°C (0.9°F) below set point
de-energize: 0.2°C (0.36°F) above set point

Frozen Mode, Set Point Below -10°C (14°F)
Type of Capacity Control: Compressor on/off
Heating: Locked out

5.3. **Defrost**

Type: Electrical heating
Intervals: Selectable, timed or automatic
Selected intervals: 3, 6, 9, 12 or 24 hours
Automatic: If selected, the unit microprocessor will determine the defrost interval based on the previous defrost length and previous defrost interval. Minimum defrost interval will be 3 hours and maximum 24 hours.
Defrost termination: (DTS) coil temperature sensor
Manual initiation: Press the manual defrost key on the unit keypad for (5) seconds.

Time delay maintains the in-range light energized throughout the defrost cycle and for 30 minutes after termination of defrost.
6. MATERIALS AND COATINGS

6.1. Materials

Main frame 5000 and 6000 aluminum
Evaporator Compartment Riveted, formed 3000 or 5000 Aluminum
Motor mounts/stators A380 series die cast aluminum
Control box "Weather tight" design
 Door .. Aluminum, includes treated polycarbonate
 window, and removable hinge pins.
Gasket Closed cell neoprene
Access Panels Two aluminum faced, insulated and gasketed
 panels. The upper left (cable side) panel houses
 the air exchange assembly.
Insulation (Foam)................. Non-CFC blown (R-134a)
 Average thickness 57.2 mm (2.25 inch)
 Nominal density 32 kg/m³ (2 lbs/ft³)
Peripheral Air Seal............... Flat PVC wiper.
Machine screws, hinges ASTM type 300 stainless steel
 bolts/nuts/washers, and rivets.
Self-tapping screws ASTM type 410 stainless steel with proprietary
 coating.
Charging/ service valves......... Brass
Exposed dissimilar metals Fitted with mylar 0.25 mm (0.010 inch) thick
Discharge Pressure
 Regulating Valve Copper body – internal components are brass
 and stainless steel

6.2. Coatings

Main frame, compressor Chemical cleaning, Chromate
 base and compartment,
 control box and door,
 fan venturi and grill, panels
Filter drier.............................. Baked powder paint
Pressure relief device, Hand applied vinyl or
 high pressure switch,
 exposed refrigerant lines,
 liquid line charging valve,
 service valves, quench TXV
 (triglycidylisocyanurate) polyester paint,
 electrostatically applied powder process,
 oven baked.
 electrostatically applied powder process,
 oven baked.
 (triglycidylisocyanurate) polyester paint,
 electrostatically applied powder process,
 oven baked.
 (triglycidylisocyanurate) polyester paint,
 electrostatically applied powder process,
7. FEATURES FOR POST-PRODUCTION INSTALLATION
Some options, not included during the original production, can be added in the field. The unit is designed to simplify installation of the following kit options unless the provision is specifically omitted.

*Power Line Remote Monitoring
*Dual voltage by transformer module
*Vent position sensing
*Water cooled condenser

Receiver and water cooled condenser assemblies are interchangeable

8. LISTING OF OPTIONS INCLUDED AND INSTALLED IN THE UNIT

Power-Up Rechargeable Battery
A rechargeable battery pack is provided to allow access to the microprocessor operator-adjustable parameters when no mains power is present. This allows the user to adjust parameters such as set point, defrost interval and current limit. User can also retrieve DataCorder data when not connected to mains power. The battery pack includes the battery housing which fits into the controller module and Ni-Cad batteries that recharge when the unit is on.

The DataCorder will wake up and record information on a regular (selectable) interval when in the USDA cold treatment mode. Battery provides a minimum of 72 hours of service from full charge when operating at -18°C (0°F) at 1 hour logging intervals.

Dehumidification Control
The unit is equipped with the ability to dehumidify. The function is selected via code select method, and indicated by the flashing of the supply probe indicator light. The set point range is 65% to 95%. The sensor is located near the evaporator fan motor (right side facing unit). Sensor accuracy is +/-3% from 50 to 80% relative humidity and +0/-2% from 80 to 98% humidity. Dehumidification is achieved by energizing the heaters during the cool mode. Heaters are not energized when out of the control temperature set point range.

USDA Cold Treatment
The unit is prepared for the recording of three pulp temperatures for the purpose of meeting the USDA cold treatment criteria. An optional fourth probe can be added, but is not included as a USDA cold treatment requirement. For the connection of the USDA pulp probes, Deutsch HD10-3-96 P style receptacles are provided. The optional probes are thermistor type. Connectors are mounted on the controller side of the evaporator sheet metal.

Partlow Provision (Electrical and Mechanical)
The unit is specially configured for ease of field installation of either the Electronic or Mechanical Partlow. This includes wiring, brackets and mounting holes.

TransFresh Port Provision
For ease of field installation of the TransFresh system, unit penetrations for the purge port are included.